3.2.48 \(\int \frac {(a+a \cos (c+d x))^3 (A+C \cos ^2(c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [148]

3.2.48.1 Optimal result
3.2.48.2 Mathematica [C] (warning: unable to verify)
3.2.48.3 Rubi [A] (verified)
3.2.48.4 Maple [B] (verified)
3.2.48.5 Fricas [C] (verification not implemented)
3.2.48.6 Sympy [F(-1)]
3.2.48.7 Maxima [F]
3.2.48.8 Giac [F]
3.2.48.9 Mupad [B] (verification not implemented)

3.2.48.1 Optimal result

Integrand size = 35, antiderivative size = 213 \[ \int \frac {(a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {4 a^3 (7 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 (13 A+35 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {8 a^3 (53 A+70 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)}}+\frac {2 A (a+a \cos (c+d x))^3 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {12 A \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (7 A+5 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)} \]

output
-4/5*a^3*(7*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellipti 
cE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/21*a^3*(13*A+35*C)*(cos(1/2*d*x+1/2*c)^ 
2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/7*A* 
(a+a*cos(d*x+c))^3*sin(d*x+c)/d/cos(d*x+c)^(7/2)+12/35*A*(a^2+a^2*cos(d*x+ 
c))^2*sin(d*x+c)/a/d/cos(d*x+c)^(5/2)+2/15*(7*A+5*C)*(a^3+a^3*cos(d*x+c))* 
sin(d*x+c)/d/cos(d*x+c)^(3/2)+8/105*a^3*(53*A+70*C)*sin(d*x+c)/d/cos(d*x+c 
)^(1/2)
 
3.2.48.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 11.57 (sec) , antiderivative size = 920, normalized size of antiderivative = 4.32 \[ \int \frac {(a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {(-28 A-25 C+5 C \cos (2 c)) \csc (c) \sec (c)}{40 d}+\frac {A \sec (c) \sec ^4(c+d x) \sin (d x)}{28 d}+\frac {\sec (c) \sec ^3(c+d x) (5 A \sin (c)+21 A \sin (d x))}{140 d}+\frac {\sec (c) \sec ^2(c+d x) (63 A \sin (c)+130 A \sin (d x)+35 C \sin (d x))}{420 d}+\frac {\sec (c) \sec (c+d x) (130 A \sin (c)+35 C \sin (c)+294 A \sin (d x)+315 C \sin (d x))}{420 d}\right )-\frac {13 A (a+a \cos (c+d x))^3 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{42 d \sqrt {1+\cot ^2(c)}}-\frac {5 C (a+a \cos (c+d x))^3 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{6 d \sqrt {1+\cot ^2(c)}}+\frac {7 A (a+a \cos (c+d x))^3 \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{20 d}+\frac {C (a+a \cos (c+d x))^3 \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{4 d} \]

input
Integrate[((a + a*Cos[c + d*x])^3*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(9/ 
2),x]
 
output
Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(-1/40*((-2 
8*A - 25*C + 5*C*Cos[2*c])*Csc[c]*Sec[c])/d + (A*Sec[c]*Sec[c + d*x]^4*Sin 
[d*x])/(28*d) + (Sec[c]*Sec[c + d*x]^3*(5*A*Sin[c] + 21*A*Sin[d*x]))/(140* 
d) + (Sec[c]*Sec[c + d*x]^2*(63*A*Sin[c] + 130*A*Sin[d*x] + 35*C*Sin[d*x]) 
)/(420*d) + (Sec[c]*Sec[c + d*x]*(130*A*Sin[c] + 35*C*Sin[c] + 294*A*Sin[d 
*x] + 315*C*Sin[d*x]))/(420*d)) - (13*A*(a + a*Cos[c + d*x])^3*Csc[c]*Hype 
rgeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d 
*x)/2]^6*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqr 
t[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x 
 - ArcTan[Cot[c]]]])/(42*d*Sqrt[1 + Cot[c]^2]) - (5*C*(a + a*Cos[c + d*x]) 
^3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2 
]*Sec[c/2 + (d*x)/2]^6*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan 
[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sq 
rt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(6*d*Sqrt[1 + Cot[c]^2]) + (7*A*(a + a* 
Cos[c + d*x])^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*((HypergeometricPFQ[{-1/2, -1/ 
4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/ 
(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*S 
qrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2 
]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2* 
Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sq...
 
3.2.48.3 Rubi [A] (verified)

Time = 1.53 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.04, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.514, Rules used = {3042, 3523, 27, 3042, 3454, 27, 3042, 3454, 3042, 3447, 3042, 3500, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^3 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3 \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {2 \int \frac {(\cos (c+d x) a+a)^3 (6 a A-a (A-7 C) \cos (c+d x))}{2 \cos ^{\frac {7}{2}}(c+d x)}dx}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(\cos (c+d x) a+a)^3 (6 a A-a (A-7 C) \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)}dx}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3 \left (6 a A-a (A-7 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {2}{5} \int \frac {(\cos (c+d x) a+a)^2 \left (7 a^2 (7 A+5 C)-a^2 (11 A-35 C) \cos (c+d x)\right )}{2 \cos ^{\frac {5}{2}}(c+d x)}dx+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{5} \int \frac {(\cos (c+d x) a+a)^2 \left (7 a^2 (7 A+5 C)-a^2 (11 A-35 C) \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (7 a^2 (7 A+5 C)-a^2 (11 A-35 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \int \frac {(\cos (c+d x) a+a) \left (2 a^3 (53 A+70 C)-a^3 (41 A-35 C) \cos (c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {14 (7 A+5 C) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (2 a^3 (53 A+70 C)-a^3 (41 A-35 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {14 (7 A+5 C) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \int \frac {-\left ((41 A-35 C) \cos ^2(c+d x) a^4\right )+2 (53 A+70 C) a^4+\left (2 a^4 (53 A+70 C)-a^4 (41 A-35 C)\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {14 (7 A+5 C) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \int \frac {-\left ((41 A-35 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^4\right )+2 (53 A+70 C) a^4+\left (2 a^4 (53 A+70 C)-a^4 (41 A-35 C)\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {14 (7 A+5 C) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (2 \int \frac {5 a^4 (13 A+35 C)-21 a^4 (7 A+5 C) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx+\frac {4 a^4 (53 A+70 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {14 (7 A+5 C) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (\int \frac {5 a^4 (13 A+35 C)-21 a^4 (7 A+5 C) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {4 a^4 (53 A+70 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {14 (7 A+5 C) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (\int \frac {5 a^4 (13 A+35 C)-21 a^4 (7 A+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {4 a^4 (53 A+70 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {14 (7 A+5 C) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (5 a^4 (13 A+35 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-21 a^4 (7 A+5 C) \int \sqrt {\cos (c+d x)}dx+\frac {4 a^4 (53 A+70 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {14 (7 A+5 C) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (5 a^4 (13 A+35 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-21 a^4 (7 A+5 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {4 a^4 (53 A+70 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {14 (7 A+5 C) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (5 a^4 (13 A+35 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {42 a^4 (7 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a^4 (53 A+70 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {14 (7 A+5 C) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {1}{5} \left (\frac {14 (7 A+5 C) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2}{3} \left (\frac {10 a^4 (13 A+35 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {42 a^4 (7 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a^4 (53 A+70 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )\right )+\frac {12 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

input
Int[((a + a*Cos[c + d*x])^3*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(9/2),x]
 
output
(2*A*(a + a*Cos[c + d*x])^3*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)) + ((12* 
A*(a^2 + a^2*Cos[c + d*x])^2*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + ((14 
*(7*A + 5*C)*(a^4 + a^4*Cos[c + d*x])*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2 
)) + (2*((-42*a^4*(7*A + 5*C)*EllipticE[(c + d*x)/2, 2])/d + (10*a^4*(13*A 
 + 35*C)*EllipticF[(c + d*x)/2, 2])/d + (4*a^4*(53*A + 70*C)*Sin[c + d*x]) 
/(d*Sqrt[Cos[c + d*x]])))/3)/5)/(7*a)
 

3.2.48.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
3.2.48.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(984\) vs. \(2(245)=490\).

Time = 24.51 (sec) , antiderivative size = 985, normalized size of antiderivative = 4.62

method result size
default \(\text {Expression too large to display}\) \(985\)
parts \(\text {Expression too large to display}\) \(1183\)

input
int((a+cos(d*x+c)*a)^3*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x,method=_RETUR 
NVERBOSE)
 
output
-16*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(1/4*C*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2* 
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1 
/2))+1/8*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/ 
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d* 
x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+3/40*A/(8*sin(1/2 
*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d* 
x+1/2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*(2*sin(1/2*d*x+1 
/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c) 
,2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+ 
12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE 
(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*c 
os(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1 
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+si 
n(1/2*d*x+1/2*c)^2)^(1/2)+1/8*A*(-1/56*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+ 
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos 
(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos( 
1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+ 
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ell 
ipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+(1/8*A+3/8*C)/sin(1/2*d*x+1/2*c)^2/...
 
3.2.48.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.22 \[ \int \frac {(a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (13 \, A + 35 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (13 \, A + 35 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (21 \, {\left (14 \, A + 15 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} + 5 \, {\left (26 \, A + 7 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} + 63 \, A a^{3} \cos \left (d x + c\right ) + 15 \, A a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{105 \, d \cos \left (d x + c\right )^{4}} \]

input
integrate((a+a*cos(d*x+c))^3*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algori 
thm="fricas")
 
output
-2/105*(5*I*sqrt(2)*(13*A + 35*C)*a^3*cos(d*x + c)^4*weierstrassPInverse(- 
4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*(13*A + 35*C)*a^3*cos(d 
*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*I 
*sqrt(2)*(7*A + 5*C)*a^3*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrass 
PInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 21*I*sqrt(2)*(7*A + 5*C) 
*a^3*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos( 
d*x + c) - I*sin(d*x + c))) - (21*(14*A + 15*C)*a^3*cos(d*x + c)^3 + 5*(26 
*A + 7*C)*a^3*cos(d*x + c)^2 + 63*A*a^3*cos(d*x + c) + 15*A*a^3)*sqrt(cos( 
d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^4)
 
3.2.48.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**3*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(9/2),x)
 
output
Timed out
 
3.2.48.7 Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^3*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algori 
thm="maxima")
 
output
integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)^3/cos(d*x + c)^(9/2) 
, x)
 
3.2.48.8 Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^3*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algori 
thm="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)^3/cos(d*x + c)^(9/2) 
, x)
 
3.2.48.9 Mupad [B] (verification not implemented)

Time = 3.71 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.31 \[ \int \frac {(a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2\,\left (C\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+3\,C\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{d}+\frac {\frac {2\,A\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7}+\frac {6\,A\,a^3\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5}+2\,A\,a^3\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+2\,A\,a^3\,{\cos \left (c+d\,x\right )}^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {6\,C\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^3)/cos(c + d*x)^(9/2),x)
 
output
(2*(C*a^3*ellipticE(c/2 + (d*x)/2, 2) + 3*C*a^3*ellipticF(c/2 + (d*x)/2, 2 
)))/d + ((2*A*a^3*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^2 
))/7 + (6*A*a^3*cos(c + d*x)*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos 
(c + d*x)^2))/5 + 2*A*a^3*cos(c + d*x)^2*sin(c + d*x)*hypergeom([-3/4, 1/2 
], 1/4, cos(c + d*x)^2) + 2*A*a^3*cos(c + d*x)^3*sin(c + d*x)*hypergeom([- 
1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(7/2)*(1 - cos(c + d*x)^2 
)^(1/2)) + (6*C*a^3*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^ 
2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*C*a^3*sin(c + d*x)* 
hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin( 
c + d*x)^2)^(1/2))